New drug-radiotherapy combinations: Current status

Professor Ricky Sharma

Chair of Radiation Oncology, University College London

Clinical and Translational Radiotherapy Research Working Group

Disclosures

Honoraria:

• Bayer, BTG, Ipsen, Sirtex, Roche, Cancer Research UK

Advisory Boards/Consultancy:

• Astra Zeneca, DeepMind, Vertex, BTG, Sirtex, Terumo, Affidea, Boston Scientific, Varian, Cancer Research Technology

Research Funding:

• Sirtex, BTG, Cancer Research UK

Overview of Talk

- 1. Why drugs plus radiotherapy?
- 2. Success stories of drugs combined with radiotherapy
- 3. Barriers and how to overcome them
- 4. Exemplar 1: Immunotherapy plus radiotherapy
- 5. Exemplar 2: DNA damage repair inhibitors

Curative Treatments for All Cancers

Sir Mike Richards, NCRI Annual Cancer Conference 2011

Additivity can Improve the Therapeutic Index

Steel G et al. Int J Radiat Oncol Biol Phys, 1979

Chemo-radiotherapy is an alternative to surgery or an adjunct to surgery for a wide range of cancers in routine clinical practice

Level 1 Evidence for Chemo-radiotherapy

Primary	Systemic agent	Advantage of combined treatment compared with radiation alone		
Glioblastoma (brain)	Temozolomide	Improved OS		
Head and neck	Cisplatin, cetuximab	Improved OS		
Lung	Cisplatin	Improved OS		
Esophagus	5FU + cisplatin	Improved OS		
Stomach	5FU + leucovorin	Improved OS compared with no treatment		
Rectum	5FU	Improved OS		
Anus	5FU + mitomycin	Improved local control		
Cervix	Cisplatin	Improved OS		
Prostate	Androgen deprivation therapy	Improved OS		
Bladder	5FU + mitomycin	Improved local control		

* OS = overall survival; 5FU = 5-fluorouracil.

Rollercoaster of Clinical Trials for Drug-RT Combos

Temozolomide plus RT for Glioblastoma Multiforme

Stupp R, et al. Lancet Oncol, 2009

MGMT as a Biomarker for Patient Selection

Promoter region of O-6-methylguanine-DNA methyltransferase (MGMT) gene

MGMT silenced

В 100 p=0.035 90 · 80 -70 -Survival (%) 60 · 50 40 30 -20 n=60 10 n=54 0 0 7 ς 6 7 Time (years) Number at risk 34 25 Combined 54 8 1 1 0 6 0 3 4 0 54 Radiotherapy

MGMT functional

Hegi M, et al. J Clin Oncol, 2008

Cetuximab + Radiotherapy in Head and Neck

Clinical and Translational Radiotherapy Research Working Group Harari and Huang. Int. J. Radiation Oncology Biol. Phys, 2001

Bonner, et al N Engl J Med, 2006.

Subsequent High Profile Negative Results

Newly diagnosed GBM: Superior PFS and QoL

Bevacizumab + RT-TMZ
 Placebo + RT-TMZ

Time (months)

Chinot O et al. *NEJM* 2014

Cervical cancer: 3-year OS 70%

Cis-RTCis-RT + tirapazamine

Time (months)

DiSilvestro P et al. *J Clin Oncol* 2014 Oesophageal cancer: Stopped early

Cis-Cape-RT + cetuximabCis-Cape-RT

Time (months)

Crosby T et al. Lancet Oncol 2013

What are the barriers to overcome?

Critical Review

The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

Ozlem U. Ataman, MD, PhD,* Sally J. Sambrook, PhD,* Chris Wilks, BSc,[†] Andrew Lloyd, BSc,* Amanda E. Taylor, PhD,[‡] and Stephen R. Wedge, PhD[†]

*Global Medicines Development, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom; [†]Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom; and [‡]Yellow Delaney Communications Ltd, Wilmslow, Cheshire, United Kingdom

Barriers identified:

- Pharmaceutical industry sponsorship is limited
- Phase III studies: mainly sponsored by cooperative groups
- Majority of RT combination trials not initiated until after drug approval
- No consensus on study endpoints

2012; 84: e447-54

Stakeholders for New Drug-RT Combinations

Strengths of 37 members: Diversity, knowledge and expertise

10 Radiation Oncologists

I Clinical Radiologist

3 Medical Oncologists

2 Scientists from Academia

3 Regulatory Experts

2 Consumer representatives

3 Statisticians

13 Scientists/ Clinicians from Pharma

Open access paper in Nature Reviews Clinical Oncology

CONSENSUS STATEMENT

CANCER INSTITUTE

OPEN

Clinical development of new drug-radiotherapy combinations

Ricky A. Sharma¹, Ruth Plummer², Julie K. Stock³, Tessa A. Greenhalgh⁴, Ozlem Ataman⁵, Stephen Kelly⁶, Robert Clay⁷, Richard A. Adams⁸, Richard D. Baird⁹, Lucinda Billingham¹⁰, Sarah R. Brown¹¹, Sean Buckland⁶, Helen Bulbeck¹², Anthony J. Chalmers¹³, Glen Clack¹⁴, Aaron N. Cranston¹⁵, Lars Damstrup¹⁶, Roberta Ferraldeschi¹⁷, Martin D. Forster¹, Julian Golec¹⁸, Russell M. Hagan¹⁹, Emma Hall²⁰, Axel-R. Hanauske²¹, Kevin J. Harrington²⁰, Tom Haswell¹², Maria A. Hawkins⁴, Tim Illidge²², Hazel Jones³, Andrew S. Kennedy²³, Fiona McDonald²⁰, Thorsten Melcher²⁴, James P. B. O'Connor²², John R. Pollard¹⁸, Mark P. Saunders²², David Sebag-Montefiore¹¹, Melanie Smitt²⁵, John Staffurth⁸, Ian J. Stratford²² and Stephen R. Wedge² on behalf of the NCRI CTRad Academia-Pharma Joint Working Group

Consensus Statements

CANCER INSTITUTE

Consumer involvement and raising awareness

Patients/consumers should be involved from the concept stage of development should be involved from es and what will be conical trial. Efforts to by combinations sho e cancer treatment. Patients/consumers need to define what will or will not be acceptable to trial participants

a clearer who may or ficacy of the potential

Include clear statements about the potential benefit for future patients from conducting this research

FDA-AACR-ASTRO Clinical Development of Drug-Radiotherapy Combinations Workshop

with support from Cancer Research UK Combinations Alliance February 22-23, 2018 | Bethesda, MD

Clinical Cancer Research

CCR Perspectives in Regulatory Science and Policy - INVITED

Clinical Development of Novel Drug-Radiotherapy Combinations

Saif S Ahmad, Marka R Crittenden, Phuoc T. Tran, Paul G. Kluetz, Gideon M. Blumenthal, Helen Bulbeck, Richard D Baird, Kaye J Williams, Timothy Illidge, Stephen Hahn, Theodore S. Lawrence, Patricia A Spears, Amanda J. Walker, and Ricky A Sharma

DOI: 10.1158/1078-0432.CCR-18-2466 🖲 🛾

Check for updates

Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology

Policy Review

Lancet Oncol 2018; 19: e240-51

Robert G Bristow, Brian Alexander, Michael Baumann, Scott V Bratman, J Martin Brown, Kevin Camphausen, Peter Choyke, Deborah Citrin, Joseph N Contessa, Adam Dicker, David G Kirsch, Mechthild Krause, Quynh-Thu Le, Michael Milosevic, Zachary S Morris, Jann N Sarkaria, Paul M Sondel, Phuoc T Tran, George D Wilson, Henning Willers, Rebecca K S Wong, Paul M Harari

Defining the Line of Sight for a New Combination

Strong Basic Science

Core Programme

Potential Regulatory Interactions

Changing the standard of care

The treatment intent and the current standard of care for each disease being treated must be defined by the investigators, including any potential variation across countries. Potential changes in the standard of care must be predicted by clinical experts if the

path to registration is to succeed.

Define the current standard of care

Predict how the standard of care might change

The line of sight should take potential changes into account

What can we do now?

AIRO Overview: Efficacy of drug-RT combinations

Small molecule inhibitors		Monoclonal antibodies/Immune			
Erlotinib, Gefitinib, Afatinib					
Sunitinih Sorafenih		Cetuximab, Panitumumab			
	Androgen Receptor Pathway	Trastuzumab, Pertuzumab			
PARP inhibitors	Abiraterone				
Evorolimus	Enzalutamide	Devacizumad			
Everonnus		PD-1 and PDL-1 antagonists			
Vemurafenib, Dabrafenib	Apalutamide				
	Daralutamida	CTLA-4 antagonists			
Vismodegib, Inidegib	Darolulamide				
	Orteronel				
	Galeterone				

Arcangeli S et al. Crit Rev Oncol Hematol 2019; 134: 87-103

Drug/radiation interaction

Harnessing drug/radiation interaction through daily routine practice: Leverage medical and methodological point of view (MORSE 02-17 study)

A. Vallard ^{a,b}, C. Rancoule ^{a,b}, S. Espenel ^{a,b}, M.-A. Garcia ^c, J. Langrand-Escure ^a, M.Y. He ^a, M. Ben Mrad ^a, A. El Meddeb Hamrouni ^a, S. Ouni ^a, J.-C. Trone ^a, A. Rehailia-Blanchard ^a, E. Guillaume ^a, N. Vial ^a, C. Riocreux ^a, J.-B. Guy ^{a,b}, N. Magné ^{a,b,*}

^a Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez; ^b Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622 Villeurbanne; and ^c General Health Department, Hygée Institute, Avenue Albert Raimond, BP 60008, 42271 Saint-Priest en Jarez, France

DOI: 10.1038/s41467-018-04278-6

OPEN

Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis

Sean P. Pitroda^{1,2}, Nikolai N. Khodarev^{1,2}, Lei Huang³, Abhineet Uppal⁴, Sean C. Wightman⁴, Sabha Ganai⁵, Nora Joseph⁶, Jason Pitt⁷, Miguel Brown⁷, Martin Forde⁷, Kathy Mangold ⁶, Lai Xue⁴, Christopher Weber⁸, Jeremy P. Segal⁸, Sabah Kadri⁸, Melinda E. Stack⁴, Sajid Khan⁹, Philip Paty¹⁰, Karen Kaul⁶, Jorge Andrade³, Kevin P. White^{7,11}, Mark Talamonti¹², Mitchell C. Posner⁴, Samuel Hellman^{1,2} & Ralph R. Weichselbaum^{1,2}

	Subtype 1 canonical	Subtype 2 immune	Subtype 3 stromal		
Frequency	33%	28%	39%		
Molecular signatures	↓Immune and stroma E2F/MYC signaling DNA damage and cell cycle	1Immune Interferon signaling p53 pathway	[†] Stroma KRAS signaling EMT and angiogenesis		
Specific mutations	NOTCH1 and PIK3C2B	NRAS, CDK12, and EBF1	SMAD3		
Metastatic recurrences	Many	Few	Many		
Overall survival	Intermediate	Favorable	Unfavorable		

MUNICATIONS

Clinical end points: Recommendations

Include clinically relevant early and intermediate end points

d en regulators and resea d (s) for a specific tumou novel combination thera e endpoints will accelerate clin End points must be pragmatic, relevant to patients and applicable in a 'real world' setting

competing data in a timely and cost-effective manner. Regulators should recognise that

endpoints must be pragmatic. relevant to patients and applicable in

setting, and should r control and (ii) th Composite or coendpoints should b.

early

Loco-regional control matters to patients clinical benefits of de ur control and no cessary or advar t of effects on norm

Secondary end points should include normal tissue toxicity

ng

Exemplar 1: Immunotherapy

Radiation Induces T-cell Priming

Spiotto M et al. Sci. Immunol. 1, eaag1266 (2016)

Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial

Bernstein, M. B. et al. (2016) Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2016.30

Translational Exemplar: SBRT + Anti-CTLA4

- Study demonstrated the safety of addition of SBRT to ipilumumab
- ~18% abscopal responses in immunocompetent mice and in patients with melanoma

Clinically relevant model systems

Immunocompromised models

- Human origin of cancer cells
- Fast growth
- Features close to original tumor

Genetically-engineered models

- These mice develop tumors driven by oncogenic mutations
- To some extent reproduce the carcinogenic process in a more physiological way

Syngeneic models

- Experimental mouse tumors injected in fully immune competent syngeneic mice
- Have provided the data leading to development of immunotherapy in the clinic

Humanized mice

 These mice can provide the best opportunity to study the interaction of human tumors with the human immune system

University College London Hospitals

Tidal wave of new Trials of RT + Immunotherapy

Data from clinicaltrials.gov

ORIGINAL ARTICLE

Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer

S.J. Antonia, A. Villegas, D. Daniel, D. Vicente, S. Murakami, R. Hui, T. Yokoi,
A. Chiappori, K.H. Lee, M. de Wit, B.C. Cho, M. Bourhaba, X. Quantin, T. Tokito,
T. Mekhail, D. Planchard, Y.-C. Kim, C.S. Karapetis, S. Hiret, G. Ostoros, K. Kubota,
J.E. Gray, L. Paz-Ares, J. de Castro Carpeño, C. Wadsworth, G. Melillo, H. Jiang,
Y. Huang, P.A. Dennis, and M. Özgüroğlu, for the PACIFIC Investigators*

Sequencing of Immunotherapy plus Radiotherapy

Ongoing clinical trials of Immunotherapy plus Radiotherapy for Stage III NSCLC

NCT number	Reference	Radiation	Sequencing	Radiation dose	Immunotherapy	Stage	Phases	Enrollment
Resectable stage III NSCLC								
NCT03217071	53	SBRT	Induction	12 Gy/1 fx	Pembrolizumab	I–IIIA	2	40
NCT02987998	54	cCRT	Concurrent	45 Gy/25 fx	Pembrolizumab	IIIA	1	20
NCT03053856	56	cCRT	Adjuvant	44 Gy//22 fx	Pembrolizumab	IIIA	2	37
NCT03237377	55	TRT	Concurrent	45-50 Gy/25 fx	Durvalumab	IIIA	2	32
				-	(+tremelimumab)			
Unresectable st	age III NSCL	С						
NCT02768558	60	CCRT	Sequential	60 Gy	Nivolumab	ш	3	13
NCT03285321	61	cCRT	Sequential	59.4-66.6 Gy	Nivolumab (+ipilimumab)	ш	2	108
NCT02434081 ^a	62	cCRT	Concurrent	NM	Nivolumab	ш	2	78
NCT02525757 ^a	58	cCRT	Sequential/ concurrent	60–66 Gy/30–32 fx	Atezolizumab	ш	2	52
NCT03102242	63	cCRT	Induction	60 Gy/30 fx	Atezolizumab	ш	2	63
NCT02125461 ^a	57	cCRT	Sequential	54-66 Gy	Durvalumab	ш	3	713
NCT03509012	64	cCRT	Concurrent	NM	Durvalumab	ш	1	300
NCT02343952 ^a	59	cCRT	Concurrent	59.4-66.6 Gy	Pembrolizumab	ш	2	93
NCT02621398	65	cCRT	Concurrent	30 fx (dose NM)	Pembrolizumab	II–IIIB	1	30

Distribution of Adult Bone Marrow

Thorax - Thoracic Spine + Ribs + Clavicle + Sternum = 25% of BM reserve

Part of these areas are included in the treatment volume, especially for patients with locally advanced disease

Exemplar 2: DNA Damage Repair

Radiobiology

The Gray – the unit of absorbed dose

1 Gy is the deposit of one joule of (radiation) energy in one kg of matter or tissue

1 Gy exposure in cells causes

- >10,000 damaged DNA bases
- ~ 1000 single stranded DNA breaks

~ 40 double stranded breaks

Radiation causes DNA damage

DNA Damage

Cell death

CCR Molecular Pathways, 2015

Combined PARP inhibitor and radiation treatment

Lenglet et al, 2013, Drugs in R&D.

The UK CONCORDE Study

Critical balance of DDR in PD-L1 expression

High lymphocytic infiltration high PD-L1 expression

Clinical and Translational Radiotherapy Research Working Group

Brown JS et al. BJC 2018

Trials of immunotherapy plus DNA damaging agent

Current clinical trials of anti-PD-1 and anti-PDL-1 in combination with other treatments for patients with breast cancer

Esteva FJ et al. Lancet Oncol 2019; 20: e175-86

Conclusions

Recommendations for future drug-RT combinations

- 1. Increase number of clinical trials, incorporating modern clinical trial designs
- Individualisation of treatment based on genetic/biological features and/or imaging, including mathematical biological systems models
- 3. Dialogue with pharma industry, including timely preclinical development
- 4. Discussions with regulators, including consumer representation

Collaboration across radiobiology laboratories

Acknowledgements

- CANCER RESEARCH UK COMBINATIONS ALLIANCE
 - PARTNERING TO DRIVE NEW COMBINATION THERAPIES
- RADIOTHERAPY-DRUG COMBINATIONS CONSORTIUM (RADCOM)
 - PROVIDING NECESSARY PRECLINICAL
 EVIDENCE FOR EARLY PHASE CLINICAL TRIALS

E-mail: ricky.sharma@ucl.ac.uk

